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ABSTRACT 

Residue number systems (RNS) can efficiently perform addition, subtraction, 

and multiplication in a parallel and fault tolerant manner. Because of this, they hold 

significant promise for use in digital signal processing, where high speed arithmetic 

operators are needed. However, the difficulties in using RNS, such as magnitude 

comparison bet\veen two RNS values, division, and determining overflow or under

flow out of system range, have prevented more widespread use of these systems. This 

thesis investigates traditional methods to perform comparisons and to propose some 

new ones. Proposals include residue number system with quotient (RNS-Q), residue 

number system quotient-on-demand (RNS-QD), and pipelined conversions from tra

ditional RNS to a mixed radix representation. These proposals will be compared with 

traditional methods with respect to silicon area needed for implementation, speed 

with which they can be developed, and VLSI techniques utilized to carry out the 

design. 
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I. INTRODUCTION 

A. BACKGROUND 

Residue Number Systems (RNS) have been investigated for quite some time for 

use in computer arithmetic i1nplen1entations. There have been many stumbling blocks 

that have limited, or at times prevented, them from becoming more commonplace in 

computer systems. Frequently encountered difficulties are division, sign determina

tion, detecting underflmv and overflow, and comparing two RNS values. The primary 

focus of this thesis is the development of more efficient methods of comparing two 

residue numbers. 

RNS representations lend themselves best to applications that require frequent 

addition, subtraction, and/or multiplication. These operations take advantage of the 

carry-free and parallel nature of residue arithmetics. Hence, they are ideally suited 

for signal processing techniques [Ref. 1]. They have also been shown to be of potential 

value in solving linear equations that are ill-conditioned [Ref. 2]. Researchers have 

done substantial work in the areas of optimizing arithmetic manipulations performed 

by Rl'\S, but the basic means of comparison has involved a form of table look-up 

for a conventional weighted number value [Ref. 3, 4, 5]. Table look-ups tend to 

require large amounts of silicon area and are not very efficient in terms of speed of 

conversion, thereby making them the primary bottleneck preventing more widespread 

use of RNS. 

This chapter includes the essential material needed for a basic understanding 

of modular /residue mathematics. Section C.6, in this chapter, provides some basic 
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\.LSI design considerations and tradeoffs. It is not intended to be comprehensive, 

but should help one to understand the fundamentals. 

B. HISTORY 

Residue, or modulo, number systems have been identified since approximately 

100 A.D. Their discovery has been jointly credited to China's Sun Tzu and the Greek 

mathematician Nichomachus [Ref. 2). Credit seems to be most commonly given to 

Sun Tzu for a verse he wrote describing a three modulus RNS with prime moduli 3, 

5, 7 repeated here: 

vVe have things of which we do not know the number 

If we count them by threes, the remainder is 2, 

If we count them by fives the remainder is 3, 

If we count them by sevens the remainder is 2, 

How many things are there? 

The answer, 23. 

The rule stated in the verse has come to be known as the Chinese Remainder Theorem 

(CRT). 

During the Ming Dynasty (1368AD - 1643AD) Hsin Tai-Wei may have pub

lished the first proof of the CRT in a verse entitled "Hun Hsin Tiang Bing" (Counting 

Soldiers). Hsin Tai-\Vei's verse is as follows: 

Three men walk together, their chance of reaching seventy so slight. 

Among the five plum trees, twenty-one blossoms did they yield. 

Seven sons at midmonth, happily did reunite. 

Divide the sum by 105, the answer is revealed. 
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This Yerse reiterates the modulo system with relatively prime moduli {3, 5, 7} and 

possessing a dynamic range of 105 (3 * 5 * 7). Euler is credited with the first rigorous 

mathematical proof of RNS published in 1734. Gauss also published this theorem and 

the overall theory of residue numbers in the nineteenth century in his Disquisitiones 

Arithmetical. [Ref. 1] 

Although the bulk of the theoretical development of residue number systems had 

been completed by the end of the nineteenth century, there had been little practical 

use found for them. With the advent of the electronic computer new interest was de

veloped in RNS methods. There was a flurry of activity after World War II primarily 

focused on the error detecting capabilities of the system to make vacuum tube com

puters more reliable. Fault tolerant and error detection/correction research became 

less important when the transistor was invented, which dramatically increased com

puter reliability. Increased activity in the RNS field was noted in the 50's and 60's, 

as attempts were made to use RNS in general-purpose computing machines. The 

difficulties encountered in handling sign detection, division, and comparison made 

RNS in1plementation undesirable in these machines. 

Digital signal processing began to emerge as a significant distinct field of research 

m the 1960's, separating it frmn general computing machines. Cheney designed a 

digital correlator that was based entirely on residue arithmetic in 1961 [Ref. 6]. 

Unfortunately, this development did not receive much attention and there was again 

a lapse in the intensity of research conducted on residue arithmetics. VLSI (very large 

scale integration) rapidly accelerated electronic development in the 1970's. New VLSI 

tools created new techniques for system design and gave rise to new problems for DSP 

researchers. Traditional methods employed for digital signal processing were not very 

modular nor parallel in nature. Modularity and parallelism are two key issues when 

considering a VLSI design implementation (discussed in a later section); these two 
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issues brought RNS research back to the surface again in an effort to take advantage 

of the modular and parallel characteristics that are inherent to residue arithmetics. 

VLSI issues bring us to the present day, where we are still in need of more efficient 

methods for comparing two residue numbers. 

Throughout the history of residue arithmetic development there are many pe

riods of inactivity. Periods of disuse have been driven by development of techniques 

that were faster than what could be implemented using RNS methods, and lack of 

totally efficient implementations of modulo systems. During the eighteenth and nine

teenth centuries some of the giants in mathematics did extensive work on theoretical 

development. The list includes Euler and Gauss. Modern researchers have often 

stated that we may be rediscovering facts about RNS that have been lost in time[ 

Ref. 1). Knuth states, "Perhaps some day highly highly parallel computers will make 

simultaneous operations commonplace, so that modular arithmetic will be of signifi

cant importance in 'real-time' calculations when a quick answer to a single problem 

requiring high precision is needed." [Ref. 2) The days of parallel computing are be

coming more and more commonplace. There is a need for more rapid calculations, 

especially in the field of digital signal processing, that can utilize the advantages of 

RNS methods. while suffering very little from any of the disadvantages. 

C. BASIC CONCEPTS 

1. RNS 

Residue Number Systems are formed by selecting several relatively prime 

moduli. Relatively prime refers to the fact that none of the moduli have any common 

factors other than unity i.e., for two distinct moduli mi and mk are relatively prime 

if and only if 

{1.1) 
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There are a variety of methods available to select relatively prime moduli [Ref. 2]. 

\Ve are not forced into having to look for special distinct primes of the Mersenne type 

or anything else that exotic [Ref. 7]. One easy way to derive a set of three relatively 

prime moduli is done by using 2n - 1, 2n, and 2n + 1 as the set. Common sense can 

also be a big help in determining if a choice of a moduli set is relatively prime. 

Another important fact about Residue Number Systems is that they form 

finite or Galois fields. This is significant in that it establishes their inherent error 

detecting capabilities. The set Sm = {0, 1, ... , m - 1} together with modulo m 

addition and multiplication forms a finite algebra, denoted {Sm, +, * }. If m is prime , 

then the set {Sm, +, *} forms a finite or Galois field. However if m is not prime, then 

{Sm , +. *} is a finite ring R(m). Fields are essentially a set of elements in which we 

can perform the simple arithmetic operations of addition, subtraction, multiplication, 

and division without leaving the set. A finite field is, in the most basic terms, a field 

with a finite number of elements [Ref. 8). 

Finite rings have a much weaker structure than do fields. One of their 

weaknesses is that there is no multiplicative inverse for all ring elements and no 

generator exists to generate all the elements of the ring [Ref. 1). Of special interest is 

a ring that is formed with a modulus choice of 2n, Obviously a power of two modulus 

will not be prime, so all these implementations will be rings. An RNS implementation 

can benefit from the choice of an exact power-of-two moduli in that the representation 

is an the length of standard words in most computers. For a three moduli set, this 

makes the other two choices quite easy, in that 2n, 2n - 1 and 2n + 1 are all relatively 

prime to each other. 

2. Moduli Set Choice 

The choice of the moduli is governed by the range of distinct values one 

wishes to represent. The range of the system is determined by the product of the 
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moduli. 

Range = A1 = mr * mr-1 * ... * m2 * m1 (1.2) 

A system with relatively prime moduli 3, 5, and 7 would have a dynamic range of 

105, the product of the moduli. The implications of the dynamic range are that these 

are the total number of values that can be uniquely represented by a residue number 

system. A moduli set must be chosen such that numbers in the system in which it 

is to be used do not typically go out of this range. When an overflow (or underflow) 

occurs the resultant RNS representation is an alias of some other value, and cannot 

be differentiated from that value. An example of this for the {3, 5, 7} RNS is that 

the value of 106 for this system is the same as the value for 1, i.e. (1, 1, 1) and would 

be interpreted as the value one if a conversion is performed. 

Typically RNS have been made up with 3 or 4 moduli, but this is in no 

way meant as a limitation. One helpful hint is that the largest moduli would best 

serve the overall system implementation if it is a direct power of two, as explained 

before. The choice of a power of .two holds other advantages than just word length; 

there is research that shows modulo adders and multipliers can be implemented at 

significant savings in terms of area and also gain some speed advantages for direct 

power of two implementations [Ref. 9]. 

Basically the idea is to work indirectly on the 'residues' instead of directly 

on some larger integer value. By doing this we can reduce the storage requirements 

for intermediate results and take advantage of the rapid addition, subtraction, and 

multiplication of these residual values. 

3. Chinese Remainder Theorem (CRT) 

The Chinese Remainder Theorem (CRT) is the basic building block for all 

residue number system development. It is undoubtedly one of the oldest theorems 
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still in use today. :Mathematically, the CRT can be restated by the following theorem 

[Ref. 2]: 

Theorem 1 Let mb m 2 , ... , mr be positive integers which are relatively prime in pairs 

(as previously stated above). Let A1 = mi * m2 * · · · * mr and let a, ub u2, ... , and Ur 

be integers. Then, there is exactly one integer u, which satisfies the conditions a ::; 

u <a+ m and u = Ujmodulo mj for 1 ::; j ::; r. 

The proof of Theorem 1 is as follows: 

Proof 1 If u = v( 1nodulo mj) for 1 ::; j ::; r, then u- v is a multiple of mj for all j, 

so Equation 1.1 implies that u - v is a multiple of m = mi m2 ... mr. This argument 

shows that there is at most one solution to a ::; u < a + m. As u runs through the 

m distinct values a ::; u < a+ m, the r-tuples (u mod m1, ... , u mod mr) must also 

run through m distinct values, since Theorem 1 has at most one solution. But there 

are exactly mi m 2 ... mr possible r-tuples {vi ... Vr )such that 0 ::; Vj < mj. Therefore 

each r-tuple must occur exactly once, and there must be some value of u for which 

(u modmt, ... ,umodmr) = (uJ, ... ,ur)· 

The CRT is the starting point for all RNS work, although some other techniques have 

been tried. 

4. Mixed Radix Representation 

Another form of representation for RNS is called the mixed radix repre

sentation (or system). An advantage of this form of representation is that it is a 

weighted format such that comparisons may be performed without further conver

sion. One method for performing the conversion from RNS to a mixed radix form is 

described in the following equations. 

VI = UI (modulo mt) = UI (1.3) 
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(1.4) 

t '3 (((u3- vi)* c13- v2) * c23](modulo m3) (1.5) 

Vr ( . . . ((ur- vi)* Cir- V2) * C2r - ''' - Vr - 1) * C(r-l)r(modufo mr) (1.6) 

U Vr ffir-1 · · · m1 + · · · + V3 m2 m1 + V2 m1 + V1 (1.7) 

These equations describe the conversion process where t he ui's are the original RNS 

representation values, the Vi's are the mixed radix values, and U is the fully converted 

value to some decimal or binary form. Calculating the conversion constants, Cij 's is 

accomplished by Euler 's equation. 

(1.8) 

It is important to note again that the Vi form of the mixed radix is a 

weighted number and may be compared directly to another value. The format of 

equations 1.4-1.8 illustrates how each value Vi is dependent on the preceding value, 

Vi-I , and all earlier values of v 's. Due to this cascading of dependency on previously 

calculated values, conversion into this type of representation lends itself well to a 

pipelined form of conversion. Full conversion to the value U is not required if only 

a comparison is desired and could be enabled or disabled as necessary. An example 

is t hat t he mixed radix form of the numbers (using the moduli set {7, 5, 3}) 35 and 

23 are (2, 1, 2) and (1, 2, 2) respectively, while in RNS they would be (0 , 0, 2) and 

(2, 3, 2). Looking at the mixed radix form it is obvious which represented number 

is larger , but thi s is not true for the RNS representation; in fact the value for 23 

··appears" to be larger than the value for 35. Investigation into more detail of the 

pipeline implementation will be done in Chapter III. 

5. Redundant Residue Nun1her Systems 

Redundant residue number systems (RRNS) are defined as residue number 

systems wi t b additional redundant moduli. A choice is made of n moduli, called the 
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nonredundant n1oduli as in any residue number system, with an additional r relatively 

prime rtdundant moduli. The extra r moduli are not considered in the calculation of 

the range 111 of the system. The system's legitimate range remains the product of 

the nonredundant 1noduli, as in the equation 1.9. 

n 

M = IImi (1.9) 
i=l 

The additional redundant terms form a product to define the illegitimate range as 

shown in Equation 1.10. 
n+r 

R = II T?li (1.10) 
i=n+I 

The overall number of unique values that can be represented is indicated by 

n+r 

A1R =II mi (1.11) 
i=I 

which includes the redundancy R.[Ref. 10] 

The following is an example of how a number could be represented using 

a RRNS implementation. Using the familiar RNS with moduli {7, 5, 3} the decimal 

number 23 is represented by the three-tuple (2, 3, 2). Adding the relatively prime 

redundant moduli of { 8, 11} results in two additional terms (7, 1 ). Putting it all 

together we have the five-tuple (2, 3, 2, 7, 1). 

Using redundant moduli allows for greater error checking and correction 

capabilities, thereby making the overall system more fault tolerant. Watson and 

Hastings have done research on RRNS that detect any errors in the residues and 

correct one of them [Ref. 10]. There are also algorithms for burst error detection 

and correction available for RRNS implementation [Ref. 11]. This capability makes 

the implementation desirability of RNS methods even greater when a strong degree 

of fault tolerance is required. The RNS with quotient implementation is a form of a 

redundant system introduced in Chapter II, only it is not formed using extra moduli. 
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6. VLSI Overview 

There are many tradeoffs to be considered in any engineering design pro

cess. Primary design considerations when undertaking a VLSI (very large scale 

integration) design are modularity, regularity, area, and development time. These 

are not the only items to consider, but they form the cornerstones for a good design 

approach and are in keeping with the spirit of VLSI. 

Modularity is a concept that takes into account, to some extent, the ease 

of mobility of a functional block within a given overall circuit and also its value in 

other circuit implementations. If a VLSI module is "well formed" the interaction it 

undergoes with other parts of the circuit can be easily and succinctly characterized. 

A highly modular circuit can be thought of as a properly written software subrou

tine. The subroutine can be embedded or called by a variety of main programs or 

other subroutines and only depends on what variables are passed into it and what 

variables it must return to the calling program. Likewise, the calling program need 

not be concerned with the internal operations of the subroutine, only that it returns 

the desired result when needed. A poorly written subroutine would rely on global 

constants or variables within a given program, thus making it, in its present form, 

highly immobile and therefore not very modular. Modularity of subroutines is basi

cally the same concept in VLSI design. Primary differences are that the interface in 

the circuit design is a physical boundary that must be connected vice the passing of 

variables in a subroutine. [Ref. 12) 

Regularity in a VLSI design is important to both the speed of development 

and also to the modularity. Optimizing each and every functional element in a circuit 

may result in a significant savings in total silicon area used and may also yield the 

highest speed of operation. The drawback to this approach is the long design time 

and the lack of a guarantee of a modular circuit. Using standard cells that have been 
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set up in an on- line library and using an iterative process for interconnection of the 

cells to form a functional block generally leads to faster design time and a modular 

cell. This is where the cost function AT (area* time delay) must be considered when 

deciding on a full custom design or a high degree of regularity [Ref. 13). 

Area and time considerations for a VLSI design are fairly closely interlocked 

as evidenced from the pre\'ious paragraphs. To accomplish a particular design in 

the least amount of space implies a full custom design with every circuit optimized. 

Implementation of a circuit in the least amount of time leads one to rely entirely 

on library cells for circuit realization. There is also the speed of the circuit to be 

considered; it must be fast enough to be compatible with the system that will be using 

it. If a full custom circuit enjoys mass production and must perform at the highest 

speeds possible, then the time required to develop it may be justified. However, if it 

is a limited production circuit without any serious speed requirements or it is a design 

prototype to investigate feasibility for implementation, then the quickest development 

time is preferable. 

7. Programn1able Logic Arrays (PLA) 

PLAs are h_ighly regular and modular VLSI structures. They are composed 

of an AI\D gate arra)' follmved by an OR gate array. The PLA is a subset of the RO~f 

structure [Ref.14). PLAs allow the VLSI designer to implement any combinatorial 

logic function that may be characterized by a sum of products (SOP). An example 

of a SOP is given in equation 1.12. below. 

X= ABCD + ABCD + ABCD (1.12) 

One primary difference between a R0~1 and a PLA is that a ROM can implement any 

combinatorial function desired given the number of inputs and outputs. The PLA 

requires the function to be implemented must be expressed as a SOP. Advantages of 
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using a PLA over a ROM are that there may be a substantial savings in terms of 

silicon area used in the implementation of a PLA. Some ROM structure applications 

have many unused output functions. The ROM may be thought of as a post office 

that maintains mailboxes for all of the people on the mailing list but only has mail for 

a small portion of those addressees on any given day. The mail boxes are always there 

but only a few are used regularly. Using a ROM to realize 8 functions of 16 variables 

requires a 65,536 8-bit word structure [Ref. 15]. This same function may well be 

realized at substantial area savings using a PLA and SOP minimization techniques. 

The facts outlined above concerning design modularity and regularity cou

pled with available tools for SOP minimization and PLA realization led to the choice 

of PLAs implementation which is investigated in this thesis. The tools used were 

espresso, eqntott, mpla, magic and rnl. These tools are all described in "Still :More 

Works by the Original Artists" [Ref. 16). After considering other approaches, this 

seemed to be the best to minimize the overall development cost and was in keeping 

with the regularity advantage of VLSI design. 

D. THESIS OVERVIEW 

This thesis concentrates on investigating traditional comparison methods and 

offering some alternative solutions to this problem. Background work has been pre

sented to develop RNS basics. Chapter II investigates conventional comparison meth

ods, proposes new techniques for conversion, and analyzes the different comparison 

techniques in order to determine the overall efficiency of each method. Comparison 

efficiency is driven by the speed at which this operation can be performed and by 

the overall savings offered by the modulo system as compared to current methods. 

Conversion is a limiting factor if the values being used require frequent manipulation 

in a weighted or conventional format, that makes the operations of division, scaling, 
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and comparison easier to perform. Chapter III concentrates on the implementation 

of the alternative methods that have been proposed. This includes the steps taken to 

realize the design in a VLSI layout and design verification. Conclusions and recom

mendations for future study are presented in Chapter IV. 
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II. ANALYSIS 

The traditional conversion method was previously alluded to in Chapter I and 

is examined in more depth in this chapter. It is to be analyzed in terms of its good 

points and drawbacks. Proposed alternatives are introduced and analyzed as far 

as what benefits can be deriYed from their implementation. Comparisons are made 

between both the new alternative solutions and the conventional method. Design 

· tradeoffs between the different methods are also discussed. 

A. NAIVE SOLUTION 

ROM table look-ups are the most commonly used method for converting an 

RNS value to some other form to facilitate comparison. The term "naive solution" 

is not meant to imply that designers are naive for choosing this solution to the com

parison problem. It is used to suggest that this is the most straightforward solution 

and is simply implemented. The overall cost function has not been fully evaluated 

in considering this alternative, which lies at the root of any VLSI implementation. 

There are some valid reasons for utilizing this approach, and they will be examined. 

Substantial drawbacks to ROM look-up tables lie in the fact that their size grows 

as the dynamic range of the moduli set being used, ROMs are relatively slow devices , 

and typical implementations require the use of multiple ROM tables. A multiple 

table look- up is given as an example in Figure 2.1 [Ref. 17]. Once the conversion 

has been accomplished, there is still the matter of performing the comparison, which 

is handled by traditional comparator circuitry. The circuitry in Figure 2.1 forms as 

an intermediate step the mixed radix representation of the residue number. This 

could be further optimized by imposing conditions so that when only a comparison is 
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ROM 3 

ROM 5 

ROM 6 ROM7 0 0 ROM8 

16-Bit Adder 

Figure 2.1: Example of a ROM Based RNS to Binary Converter [Ref. 17] 

15 



desired the mixed radix value could be utilized for the comparison and not wait on the 

full conversion. Doing this would reduce the time delay required for full conversion 

when actually not needed. Full conversion could be completed if the value is actually 

required for some external purpose. 

B. PROPOSED ALTERNATIVE SOLUTIONS 

The following three sections introduce alternatives to the "naive solution." Only 

one of them (the RNS-QD method) has been implemented and verified with a VLSI 

layout, the other two have been theoretically developed. 

1. RNS with Quotient 

This alternative uses the traditional RNS implementation with the addi

tional element of the quotient, of the largest modulus, being part of the system. The 

name RNS with quotient (RNS-Q) comes from the fact that this quotient is now part 

of the representation. Advantages of this concept are that the quotient of any modu

lus and its residue form a unique value and are "ordered" in terms of magnitude, thus 

allowing direct comparisons to be accomplished. Conversions are only required with 

this system when a traditional value is required for output or some other use, but 

not to perform comparisons. The comparisons can be accomplished using traditional 

methods with "off the shelf" components. 

The motivation for using the RNS-Q method is derived from Theorem 2. 

This theorem and its proof show the validity of such a representation. 

Theoren1 2 Let .Af = mr ... m 2m 1 with mr, ... , m2, and m 1 all relatively prime. 

Then, the representation of { i/mj, i mod mr, ... , i mod m 2, i mod mi} is unique for 

any i E (0, .Af- 1]. 

Proof 2 If a #- b and a and b E (0, .Af- 1] uszng an r moduli system with moduli 

mr, ... m2, and m 1, with .Af = mr · · · m 2m 1. The only parts of this in doubt are 
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th e afmj and b/m;, because th e rest of the representation are the traditional Rl\·s 

and they are unique as a consequence of the CRT. If afmi and b/mi are not unique 

representations, which they may well not be, the uniqueness of the remaining portion 

of the value preserves the uniqueness of the entire representation. QED. 

RNS-Q representation may be thought of as the quotient serving as a redundant value, 

one that is not required to ensure uniqueness, but allows for immediate comparison 

without conversion. The RNS-Q system also forms a partition or an equivalence class 

of the set [0, M - 1] which is called the quotient set M /mi [Ref. 18]. 

Drawbacks to this implementation are that extra bits are required to retain 

the quotient of the largest Inodulus, the system is no longer carry-free, and there is 

a potential loss of some of the fault tolerance of the traditional RNS. There will also 

be the extra burden of checking for overflow or underflow into or out of the largest 

moduli in order to update the quotient properly. 

Loss of the carry-free characteristic poses the largest potential problem. 

Carry-free loss is due to the fact that whenever any arithmetic operation is performed 

on the RNS-Q numbers overflow out of, or underflow into, the largest residue must 

be reflected in the qu·otient also. With true RNS there is no requirement to check for 

the occurrence of overflow or underflow during normal operations. Traditional RNS 

does suffer from an aliasing problem when underflow or overflow occur. Failure to 

account for overflow and underflow will result in an invalid quotient. Overflow from 

the largest residue indicates that the quotient must be incremented by one, while 

underflow implies we must decrement the quotient once. 

Table 2.1 outlines an RNS implementation using the relatively prime mod

uli set {2, 3, 5}. This system possesses a dynamic range of 30 values (0-29), and was 

chosen to illustrate some of the different representations that can be made. Shown 
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TABLE 2.1: Illustration of RNS Implementations 

z RNS quotient RNS-Q Mixed Radix 

rsr3r2 qs qsrsr3r2 V3V2V1 

0 0 0 0 0 0000 0 0 0 
1 1 1 1 0 0 1 1 1 0 0 1 
2 2 2 0 0 0 2 2 0 0 1 0 
3 3 0 1 0 0 3 0 1 0 1 1 
4 4 1 0 0 0 4 1 0 0 2 0 
5 0 2 1 1 1 0 2 1 0 2 1 
6 1 0 0 1 1 1 0 0 1 0 0 
7 2 1 1 1 1 2 1 1 1 0 1 
8 3 2 0 1 1 3 2 0 1 1 0 
9 4 0 1 1 1 4 0 1 1 1 1 
10 0 1 0 2 2 0 1 0 1 2 0 
11 1 2 1 2 2 1 2 1 1 2 1 
12 2 0 0 2 2 2 0 0 2 0 0 
13 3 1 1 2 2 3 1 1 2 0 1 
14 4 2 0 2 2420 2 1 0 
15 0 0 1 3 3 0 0 1 2 1 1 
16 1 1 0 3 3 1 1 0 2 2 0 
17 2 2 1 3 3 2 2 1 2 2 1 
18 3 0 0 3 3 3 0 0 3 0 0 
19 4 1 1 3 3 4 1 1 3 0 1 
20 0 2 0 4 4 0 2 0 3 1 0 
21 1 0 1 4 4 1 0 1 3 1 1 
22 2 1 0 4 4 2 1 0 3 2 0 
23 3 2 1 4 4 3 2 1 3 2 1 
24 4 0 0 4 4400 400 
25 0 1 1 5 5 0 1 1 4 0 1 
26 1 2 0 5 5 1 2 0 4 1 0 
27 2 0 1 5 5 2 0 1 4 1 1 
28 3 1 0 5 5 3 1 0 4 2 0 
29 4 2 1 5 5 4 2 1 4 2 1 
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are the traditional RI\S , the quotients of the largest modulus , RNS- Q, and the mixed 

radix representation. It is easy to see that the traditional RNS does not yield a nicely 

weighted system of numeric values that we are accustomed to working with. Mixed 

radix and RNS-Q are also easily verified as ordered number systems and show that 

they may be compared without further manipulation. 

It is obvious from Table 2.1 that {4, 2, 1, 0} is greater than {3, 3, 0, 0}. 

Our common sense would also tell us that {3, 0, 0} is greater than {2, 1~ 0}, which 

is not true in the traditional RNS representation. The RNS-Q entity has the "look 

and feel" of of a traditional weighted decimal system (when ordered: q5 , rs, r3, r2). 

This is because the quotient carries the most weight, just as a digit in the hundreds 

column of a decimal number carries more weight than a digit in the tens column. 

The greatest advantage derived from an implementation of the RNS-Q 

system is that no conversion is necessary for comparison. Complete conversion can 

be accomplished by using a multiplier and an adder to multiply the quotient and its 

modulus and sum that result with the associated residue. RNS-Q systems were not 

implemented or tested. Implementation was not performed because an overall system 

would have to be developed to enable design tradeoffs between other methods. 

2. RNS with Quotient on Den1and (RNS-QD) 

RNS-QD is based on the principles outlined for the RNS-Q representation 

given In the preceding section. The principle in RNS-QD is that the quotient is 

looked up when needed, hence the name RNS quotient on demand. Implementation 

of this system utilizes the advantages of the RNS-Q representation while maintaining 

the inherent strengths of the conventional RNS of being carry-free and fault tolerant . 

The loss of these traits were the principle drawbacks to the RNS-Q system. 

Look-up tables were considered a disadvantage in the traditional RNS 

implementation. This was due to the fact that the table size grew in proportion to 
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the range of the system and were typically implemented in ROM-based structures. 

The fact that each Rl\S value was a unique representation made minimization of 

the number of sum-of-product terms required for implementation very slight. ROM

based table look-up systems also were a poor use of available silicon area, as described 

in the introduction, unless every memory site available is required. RNS-QD systems 

can be implemented so as to overcome some of these drawbacks. 

PLA structures can be utilized to make more efficient use of available silicon 

real estate, than a similar realization based in ROMs, as long as the function can be 

expressed as a sum-of-products. This is true for both the RNS and RNS-QD systems. 

The adYantage of the RNS-QD system is that there is substantial minimization that 

can be gained from the SOP terms used to define the function. Quotients derived 

from any of the moduli are not unique to each value in the range of the system. Each 

modulus' quotient set is determined by the product of the other moduli of the system 

and forms a partition of the set of all values in the range [Ref 17]. RNS with moduli 

set {3 .. 5, 7} has 15 different quotients (0 - 14) for the modulus seven, 35 quotients for 

three, and 21 quotients for five in the system range of 105. This also illustrates why 

selection of the largest modulus limits the number of carries required in a RNS-Q 

implementation. 

Looking at the {3, 5, 7} system implementation we should choose 7 as the 

modulus of choice for which the quotient table will be generated. This means that 

there will be fifteen different quotients required to cover the range 0 - 104 (3 * 5). 

Ideally we could hope that the number of logic equations required to implement the 

table would reduce to fifteen. Although this is not the case, it is the number of output 

terms that we need to complete the quotient index. 
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3. Pipelined Mixed Radix Conversion 

Fundamentally a pipeline in a computer system is formed when a large 

task is broken up along natural boundaries into sub-tasks. This is most frequently 

encountered in the execution of instructions within a central processing unit but, can 

also be found in floating point processors and other arithmetic devices. Breaking up 

a task into smaller units, called stages, allows for the clock cycle to be shortened such 

that all stage outputs are completed at the end of the cycle. Minimum clock cycle 

duration is limited to the slowest stage's speed. Cascading the stages together forms 

what is referred to as a pipe. Generally speaking the latency from entering the pipe 

to exiting the pipe is longer than if the task were not subdivided. The idea is that as 

long as there is one instruction entering the pipe every clock cycle theoretically, over 

long periods of time, instruction execution will approach one per cycle. [Ref. 19) 

Conversion from RNS to mixed radix is an easy task, but the following 

example should clear up any doubts and also illustrate the cascading nature of the 

conversion. The first step is to calculate the conversion constants Cij for the moduli 

set being used. Conversion constants are obtained using Equation 1.3, and, once they 

have been calculated for a given moduli, set they never have to be recalculated. Using 

the moduli set {5, 3, 2} (with m3 = 5, m 2 = 3, and m 1 = 2), the conversion constants 

are: c12 = 2, c13 = 3, and c23 = 2. Proceeding with the rest of the conversion the 

RNS value (4, 1, 1) was chosen to be converted. Using Equations 1.4 through 1.7 the 

values of the vi's can be obtained from the ui's as follows: 

v2 - (u2- vi)c12 mod m 2 = [(1-1) * 2] mod 3 = 0 

V3 [((u3- vi)c13- v2) * c23]mod m3 = [((4- 1) * 3- 0) * 2)mod5 = 3 
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The mixed radix representation for the RNS value (4, 1, 1) is (3, 0, 1). A pro

gram can easily be written to perform this function automatically given the input 

moduli set. 

Mixed radix conversion lends itself well to this type of implementation, due 

to the nature of the conversion each step depends in order on all the preceding steps. 

This is evidenced from equations 1.3 to 1. 7 in Chapter I. Systems that perform large 

numbers of conversions or that perform many in bursts can benefit from pipelined 

structures. There are several stages that can be cascaded to form the pipe and the 

length of the pipe is in direct proportion to the number of moduli in the system. 

Individual stages are also fairly modular and can be built with good regularity, which 

lend themselves to the VLSI environment. The final stage, needed for full conversion, 

is not always required if only a comparison is to be done. Enabling or disabling the 

final stage could be done to reduce pipeline latency for situations when full conversion 

is not required. 
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III. IMPLEMENTATION 

Circuitry for the RNS-QD system and the straightforward full conversion look

up tables were designed and implemented using programmable logic arrays. The 

following sections provide a detailed description of the design process. 

A. GETTING STARTED 

The first steps in any engineering design process are choosing the methods of 

implementation that best fit the task. This consisted initially of deciding how best 

to generate differing layouts for the purpose of determining which was more efficient. 

Generating layouts in VLSI can be extremely time consuming if there is a desire 

for a full custom realization. The decision was made to implement the traditional 

RNS with full conversion table look-up and the RNS-QD with a quotient look-up 

table utilizing PLAs. This was based on the fact that these designs could be easily 

accomplished. were very modular, and could be easily contrasted as to which was 

n1ore efficient. RJ\S-Q and the pipelined MRC systems are of the type that their 

efficiency would be -best demonstrated in a full system implementation and are not 

easily compared to the other two solutions. 

To realize a PLA design, one must develop the logic equations necessary, mini

mize the initial equation set, and generate the PLA layout. Several design tools are 

available for aiding the designer. Espresso is a design tool for logic equation minimiza

tion that is part of the magic VLSI computer assisted design (CAD) tool [Ref. 16). 

Utilization of espresso greatly reduces the development time required of the designer 

and in some cases makes an impossible problem reasonable. The output generated by 

espresso is formatted for direct use by the tool mpla. Mpla generates a PLA layout 
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automatically when given the SOP equations that must be realized. Without a tool 

such as mpla, the designer could proceed with a PLA design by laying out cells for 

basic AND and OR gates. The AND and OR gate cells could be connected together 

in the proper sequence so as to realize the same logic equation as done by mpla, but 

this is still more time consuming. There was only one tool missing- a tool to generate 

the logic equations was needed. The programming environment chosen was C. This 

choice was based on the need for rapid prototyping and the simplicity of the programs 

that were required. 

The first level program written was to verify the structures of RNS and in the 

hopes of providing some additional insight into the interplay between the relatively 

prime moduli of the system. Further refinement of this entry level program resulted in 

versions that created RNS-Q type systems for graphic verification of the uniqueness 

theorem introduced in Chapter II. Another program modification yielded mixed radix 

representations of RNS, which allowed illustration of the fact that this is an "ordered" 

system. Final refinement resulted in two programs to generate logic equations in the 

output format required for use by espresso, the VLSI minimization tool to be used. 

One program generates equations for a traditional RNS table look-up conversion 

(cnvrtres.c), the other for RNS-QD quotient look-up table (qlugen.c), both of which 

are contained in Appendix A. 

B. IMPLEMENTATION PROCESS 

Once the programs were performing properly to enable generation of the logic 

equations, the question of what systems should be built arose. The decision was 

made to test several implementations that had similar dynamic ranges. This enabled 

checking of the hypothesis that by choosing a much larger, largest prime modulus, 

i.e. significantly larger than the other moduli, if there were any savings gained by 
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haYing less quotients in the table. The direct power of two moduli was also checked 

to investigate savings that had been realized for power of two adders and multipliers 

[Ref. 9). Obviously one pitfall to this approach is that the dynamic ranges for two 

differing residue number systems will not be identical, but they can be close enough. 

The choice of a dynamic range is based on the fact that it is large enough so that 

there will be little chance of overflow out of the range. Dynamic range requirements 

are a floor setting, or minimum setting, much the same as number of bits needed in 

a computer. If a minimum word length needed is eight bits but you have a 16 bit 

machine there are advantages to using the larger word size computer, while placing 

no limitations on the requirements. 

1. Initial Test 

RNS sets that were initially evaluated were based on the requirements for 

a n1inin1um dynamic range of 105. This allowed for use of the previously referred 

to system of relatively prime moduli {3, 5, 7}. Two other systems were chosen for 

comparison that had a dynamic range greater than 105. These two systems have 

moduli of {3, 5, 8} and {2, 5, 11} with dynamic ranges of 120 and 110 respectively. 

The assumption on dynamic range for this implementation is that the system requires 

a minimum range of 100. Another point of interest between these three systems is that 

they all maintain the san1e number of input (8) and output (4) bits. Maintaining an 

equal number of I/0 bits is not necessarily a requirement, but provides for stability 

between the systems and, as a result, did not become a point of contention when 

the final evaluation was made. Implementation of these systems was done for both 

the traditional RNS and the RNS-QD methods to allow contrasting the costs of 

realization. 

The implementation was realized using PLAs generated from the mini

mized logic equations from espresso and were fed directly to mpla for VLSI layout. 
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Figure 3.1: Con1parison of RNS and RNS-QD PLA Itnpleinentation 
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l\Iini1nization by espresso resulted in an average reduction of 20 - 30% of the original 

logic equations generated by the C program for the RNS-QD system. Virtually no 

minin1ization was realized when espresso was used on the logic equations for the tra

ditional RNS conversion look-up table. This is not surprising when one thinks about 

it. The RNS values are unique, and they correspond to unique integer numbers, so 

one should not expect to be able to realize any reduction in size. An exception was 

discovered when a direct power of two modulus was implemented (except where the 

modulus was 2 itself). In this case~ there was some logic minimization encountered , 

but it was still less than what was afforded one in the quotient look-up table. This 

n1inimization contributed to reducing the width of the PLA, which in essence is reduc

ing the number of terms that n1ust be fed to the OR gate plane. The majority of the 

minimization that occurred in the quotient look-up table accounted for reductions in 

the height of the PLA, or the number of AND gates required for realization. There 

was also some reduction in the width of these structures for the RNS-QD format. 

Reduction in the height of the PLA has the greatest effect on the overall area, and 

the slight reduction in the width for the direct power of two conversion PLA still had 

an overall growth in total area from the previous smaller implementation. Figure 3.1 

shows the difference~ in overall area of the RNS versus the RNS-QD implementations. 

The average savings in area gained by using the RNS-QD system is 30%. 

2. In-Depth Testing 

After performing this initial test there was a desire to attempt a more in

teresting problem. The University of Florida has been working on a pipelined mixed 

radix converter for the moduli set {101, 109, 113}, and it would be interesting to com

pare results [Ref.20]. Using the same C programs used to develop the logic equations 

seen1ed easily accomplished. Generating the complete set consumed all the available 

disk space and thereby shut down the ECE Vax. Looking at the espresso program, 
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also seems to indicate that a maximum of 3000 stack pushes are available before an 

error is received. This would have been exceeded by an attempt at minimization of 

the logic equations for this system, which are a little over one million. 

To investigate some moduli sets with larger dynamic ranges, and to avoid 

computation problems, another set of moduli was chosen of approximately ten times 

the dynamic range of the first set. The sets of relatively prime moduli are {3, 5, 64}, 

{7, 11, 16}, and {3, 11, 32}. Use of these moduli sets gives a dynamic range of 960 

- 1232. The choice of these sets was driven by the desire to further investigate the 

ideas of the "much larger moduli" hypothesis for savings in area, and the power of 

two savings that had been realized in adder and multiplier implementations [Ref. 9). 

This time the generation of the logic equations was accomplished without 

putting any heavy strain on the Vax's available disk space. Minimization by espresso 

was fairly time consuming but was completed in about two hours for each set of 

moduli. Full PLA implementation was not required as from previous results analysis 

of the reduction in the amount of logic equations would be a good indicator of the 

size of each PLA. The results are tabulated in Table 3.1. From Table 3.1, it is easy 

to see that the most significant reduction came from the implementation of the set 

{3, 11, 32}. Earlier work would have lead us to believe, or at least hope for, the 

greatest reduction in the set {3, 5, 64}. What Table 3.1 doesn't show is that the 

number of output lines for the {3, 5, 64} set is four, while there are six output lines 

required for implementation of the {3, 11, 32} representation. Input and output lines 

had remained constant throughout the initial test set and were not variables to be 

evaluated. Decreasing the number of routing lines required is always welcome, and 

may be more significant than the extra area consumed by the larger PLA. The PLA 

may even be smaller due to this decreased bandwidth needed for the system with the 

largest quotient modulus, thereby needing less quotients as outputs. 
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TABLE 3.1: Results of Minimization By Espresso 
1v1oduli # of Original #of Reduced Percent 

Sets Equations & Equations Reduction 
Dynamic Range 

{ 7, 11, 16} 1232 828 33% 
{3, 11, 32} 1056 511 52% 
{3, 5, 64} 960 555 42% 
{3, 13, 29} 1131 831 26% 
{3, 1L 31} 1023 556 46% 
{3, 11, 34} 1122 556 50% 

The actual PLA implementation was done by sending the reduced equation 

set to the VLSI tool mpla for automatic realization. The results of this step are 

contained in Table 3.2. The dimensions used for height, width, and area are in terms 

of the technology being used in microns. Three micron technology is being used, so the 

dimensions would be divided by three to obtain the actual dimensions in micrometers 

(or by nine micrometers for area), to get the size using one micron technology. Table 

3.2 shows that the { 3, 11, 32} implementation uses the least amount of area, as 

predicted by the least number of logic equations required to realize this system. The 

{3, 5, 64} system is ·only slightly larger than the {3, 11, 32} system and is not as 

wide. \Vidth, of a PLA, is an indication of the number of gate delays from input to 

output. Although timing analysis was not performed on these circuits, the less gate 

transitions required implies the faster the operation of the circuit. 

Testing was performed to investigate for power-of-two advantages that 

had been discovered previously [Ref. 9]. The implementations tested were for moduli 

sets {3, 11, 29}, {3, 11, 31}, {3, 11, 34}, and the previously implemented system 

{3, 11, 32}. The dynamic ranges, percent minimization, and area cost statistics are 

shown in Tables 3.1 and 3.2. Once again the system {3, 11, 32} holds an advantage 
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TABLE 3.2: In Depth Test Results 
:Moduli Height Width Total 

Sets Area 
{7, 11, 16} 7068 462 3265416 
{3, 11, 32} 4388 390 1711320 
{3, 5, 64} 4762 382 1819084 

{3, 13, 29} 7092 438 3106296 
{3, 11, 31} 4794 382 1831308 
{3, 11, 34} 4770 398 1898460 

over the other implementations, but the {3, 11, 31} system is a close second. Full 

implementation of the { 3, 11, 31} system will require much more total area, because 

the residue multipliers and adders are much larger [Ref. 9]. It appears that there is 

fairly linear growth in the size of the PLA structure away from a direct power-of-two 

implementation, in both the positive and minus directions. The choice in this case 

would be the system with moduli set {3, 11, 32}, for the best overall savings. 

C. DESIGN VERIFICATION 

To completely authenticate a design there must be some type of verification 

performed to guarantee its validity. Verification for the implementation of the RNS-

QD and traditional RNS PLA layouts was done with the use of a tool called RNL 

(Ref. 21]. RNL is a timing logic simulator for digital MOS circuits. It is an event 

driven simulator that uses simple resistance-capacitance model of the circuit that has 

been extracted from the VLSI layout done in magic. RNL allows for verification of 

the device of interest by using timing files and node transitions as inputs. There are 

other simulation tools that can be used if a more detailed circuit analysis is desired, 

but the goal of this testing is to verify that the for a given set of input vectors the 

proper outputs are received. 
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Design verification was performed on the first few PLAs implemented. A sample 

R:\L file is contained in Appendix C, that includes timing, clock speeds, inputs , and 

outputs received for the system {3, 5, 7}. After ensuring that the logic equation gen

erating programs functioned properly further design verification was not performed. 

Worst case timing analysis was not accomplished, but could also be done using RNL 

and the glitch detector [Ref. 21]. 
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IV. CONCLUSIONS 

Investigation into the usefulness of RNS in computer arithmetics has been going 

on for some time. One of the principle drawbacks has been the difficulty in comparing 

two residue numbers without conversion to some other form. The traditional method 

for comparison is a R0~1 based table look-up; which is relatively slow and uses a 

large amount area. Proposals for the use of RNS-Q, RNS-QD, and pipelined MRC 

have been presented and analyzed in this paper. These proposals offer savings in area 

required and may offer speed advantages. 

The PLA implementation of RNS-QD offers a significant savings in terms of sil

icon area over the straightforward RO.l\1look-up method. The larger moduli concept 

did not show an overall decrease in the size of the PLA required for implementation, 

but did yield a lower number of output lines, thereby reducing routing requirements 

for the circuit. Power-of-two investigation sho~ed that there are some savings to 

be gained from implementing these systems, but was not as dramatic as previously 

discovered for the power-of-two adders and multipliers. There is still the necessity 

for a multiplier and an adder to facilitate full conversion to a conventional weighted 

number. If the need for comparisons occur much more frequently than full conver

sions , the PLA RNS-QD is a more viable method. However, if full conversions are 

required in conjunction with virtually every comparison, than this method may not 

yield a significant speed advantage over the ROM approach. 

RNS-Q systems offer distinct advantages over both the traditional RO.l\1 and 

RNS-QD methods in terms of silicon real estate. This is especially true if the num

ber of comparisons that a given system requires is very high compared to all other 

mathematical operations. The drawbacks to this approach are that the system is no 
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longer carry- free and because of this there is some loss in the inherent fault tolerance 

of con\·entional RNS. Loss of fault tolerance is most severe, if damage were to occur to 

the most significant (largest) modulus of the system, which would essentially disable 

the entire circuit. 

The choice of the method to be employed must be approached from the view of 

what type of system is going to be using it to derive the best advantage. Each of the 

methods discussed have their own strong points. Considerations as to what is more 

crucial to the system, such as area occupied or speed of operation, will help to choose 

the implementation that will best fit the needs of the design. 
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APPENDIX A: C CODE UTILIZED 

Enclosed in this appendix are the two C programs used to generate logic equa-

tions utilized for PLA generation. 

1. C Code for RNS to Binary Converter 

I************************************************************ 

* PROGRAM: 

* FUNCTION: 

* 
* 
* 
* 

AUTHOR: 
VERSION: 

cnvrtres.c * 
Generates logic equations in the * 
format necessary to be used by the * 
VLSI function "espresso". The output• 
derived can be used by "mpla" to * 
create a PLA layout for a RNS to * 
conventional binary value converter.* 
David E. Gilbert * 
1.2 * 

* 
* 
* 
* DATE (last mod):29 AUG 1991 * 
************************************************************I 

#include <stdio.h> 
#include <math.h> 

#define TRUE 1 
#define FALSE 0 

main(argc, argv) 
int argc; 
char **argv; 
{ 

int mi[S], M, i, j, k, ctr[S], DONE, tmp; 
int digit, tmp_div, raise_it; 

M=1; 
for(i=1; i< argc; i++) { mi[i]=atoi(argv[i]); 

M = M*mi[i]; 
} 

mi[4] = M; 

I• CALCULATE THE POWERS OF 2 NEEDED FOR NUMBERS OF BITS NEEDED •I 

for(i = 1; i <= 4; i++) 
{ 

ctr [i] = 0; 
tmp = mi[i]; 
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DONE = FALSE; 
while ( ! DONE ) 
{ 

trnp = trnp I 2; 
ctr[i] ++; 
if( trnp == 0 ) DONE = TRUE ; 
} 

} 

printf("# conversion table look-up for RNS with { %d, %d, %d} \n", mi[1], 
mi [2] , mi [3] ) ; 
printf(".i %d \n", ctr[1] + ctr[2] + ctr[3]); 
printf(".o %d \n", ctr[4]); 
printf(".phase "); 
for(i = 1; i <= ctr[4]; i++) printf("1"); 
printf("\n \n "); 
I* COMPLETION OF BIT CALCULATION PORTION OF PROGRAM *I 

I* Calculate the bit fields required and output *I 
for( i = 0; i < M; i++ ) 

{ 

for( k = 1; k <= 4; k++ ) 
{ 

DONE = FALSE; 
raise_it = ctr[k]; 
tmp = i; 

while ( ! DONE 
{ 

tmp = tmp% mi[k]; 
raise_it = raise_it- 1; 
tmp_div = 1; 

for(j = 1; j <= raise_it; j++) 
tmp_div = tmp_div * .2; 
digit = tmp I tmp_div; 
tmp = tmp % tmp_div; 
if(digit != 0) printf("1"); 
else printf("O"); 
if( raise_it == 0 ) DONE = TRUE; 
} 

printf(" "); 
} 

printf("\n"); 
} 

printf(".e"); 
} 
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2. C Code for Quotient Table Generation 

!********************************************************** 
* PROGRAM NAME: qlugen.c * 
* FUNCTION: Generates minterrn equations in the format * 
* required by the VLSI tool "espresso" for * 
* minimization and then implementation as * 
* PLA for an RNS-QD quotient look-up table. * 
* VERSION: 1.4 * 
* AUTHOR: David E. Gilbert * 
* Date Last Changed: 10 Sep 1991 * 
**********************************************************! 
#include <stdio.h> 
#include <math.h> 

#define TRUE 1 
#define FALSE 0 

main(argc, argv) 
int argc; 
char **argv; 
{ 

int mi[S], M, i, j, k, ctr[S], biggest, tmp, DONE; 
int enter, digit, tmp_div, raise_it; 

M=1; 
for(i=1; i< argc; i++) { mi[i]=atoi(argv[i]); 

M = M*mi [i] ; } 
I* Find the largest moduli 
biggest = 0; 
for(i = 1; i < argc; i++) 

{ 

if(mi[i] > biggest) 
} 

mi[4] = M I biggest; 

biggest= mi[i]; 

I* CALCULATE THE POWERS OF 2 NEEDED FOR NUMBERS OF BITS NEEDED *I 
for(i = 

{ 
1; i <= 4; i ++) 

ctr[i] = 0; 
tmp = mi [i]; 
DONE = FALSE; 
while ( ! DONE ) 
{ tmp = tmp I 2; 

ctr [i] ++; 
if( tmp == 0 ) DONE = TRUE; } }/*end of while *I 

printf("# conversion table look-up for RNS with { %d, %d, %d} \n", mi[1], 
mi[2] , mi [3]) ; 
printf(".i 
printf(".o 

%d \n", ctr [1] + ctr [2] + ctr [3]); 
%d \n", ctr[4]); 
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printf (". phase ") ; 
for(i = 1; i <= ctr[4] ; i++) printf("1") ; 
printf("\n \n " ); 
I* COMPLETION OF BIT CALCULATION PORTION OF PROGRAM *I 

I* Calculate the bit fields required and output *I 
mi[4] = biggest; I* This is a temporary fix and should be corrected *I 
for( i = 0; i < M; i++ ) 

{ 

for( k = 1; k <= argc; k++ ) 
{ 

DONE = FALSE; 
raise_it = ctr[k]; 
tmp = i; 
enter = 1; 
while( ! DONE 
{ 

} 

if(k == argc 
{ 

} 

if( enter== 1) tmp = tmp I mi[k]; 
else tmp = tmp% mi[k]; 
enter ++; 

else tmp = tmp% mi[k]; 
raise_it = raise_it - 1; 
tmp_div = 1; 

for(j = 1; j <= raise_it; j++) 
trnp_div = trnp_div * 2; 

digit = tmp I trnp_div; 
trnp = trnp % trnp_div; 
if(digit != 0) printf("1"); 
else printf("O"); 
if( raise_it == 0 ) DONE = TRUE; 

printf(" "); 
} 

printf("\n"); 

} 

printf (". e"); 
} 
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APPENDIX B: SAMPLE EQUATIONS 
1. Output from QLUGEN.C 

# conversion table look-up for RNS with { 2, 3, 5 } 
. i 7 
. o 3 
. phase 111 
00 00 000 000 
01 01 001 000 
00 10 010 000 
01 00 011 000 
00 01 100 000 
01 10 000 001 
00 00 001 001 
01 01 010 001 
00 10 011 001 
01 00 100 001 
00 01 000 010 
01 10 001 010 
00 00 010 010 
01 01 011 010 
00 10 100 010 
01 00 000 011 
00 01 001 011 
01 10 010 011 
00 00 011 011 
01 01 100 011 
00 10 000 100 
01 00 001 100 
00 01 010 100 
0 1 10 011 100 
00 00 100 100 
01 01 000 101 
00 10 001 101 
01 00 010 101 
00 01 011 101 
01 10 100 101 
. e 
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2. Reduced Equations from Espresso 
The following is a listing of the reduced set of equations from the original 

moduli set {3, 5, 7} after being processed by espresso. These are the equations that 
would be used to generate the quotient look-up table PLA with the VLSI tool mpla. 

# conversion table look-up for RNS with { 2, 3, 5 } 

.i 7 

.0 3 
#.phase 111 
.p 20 
0010100 010 
0110100 100 
0101011 010 
0000100 100 
0110011 100 
0101100 011 
0110001 010 
0101000 100 
000101- 100 
0100010 100 
0110010 011 
0100001 100 
000100- 010 
001000- 100 
0100000 010 
000001- 010 
000-0-1 001 
00-00-1 001 
01-0-00 001 
010-0-0 001 
. e 
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APPENDIX C: SAMPLE RNL FILES 
1. Sample RNL Execution File 

The following is a listing of an execution file to simulate the RNS-QD 
system {2, 3, 5}. 

The name of this control file for rnl is: qlu2.1 
This is the control file for simulation on a PLA for quotient look-up 

LOAD STANDARD LIBRARY ROUTINES 
(load "uwstd.l") 
(load "uwsim.l") 

FILE WHICH WILL LOG THE RESULTS 
(log-file "qlu2.rlog") 

READ IN THE BINARY NETWORK FILE 
(read-network "qlu2") 
(sim-init) 

DEFINE THE TIME SCALE FOR SIMULATION 
(setq incr 10) 

DEFINE INPUT VECTOR IF ANY, standard STYLE 
(defvec '(bit status input_l input_2 input_3 input_4 input_S input_6 input_7)) 
(defvec '(bit output output_l output_2 output_3)) 

DEFINE INPUT VECTOR IF ANY, SINGLE INDEX STYLE 

DEFINE INPUT VECTOR IF ANY, double index STYLE 

STANDARD REPORT FORMAT DEFINITION. 
(def-report '("response= " clka clkabar (vee output) (vee status))) 

PLOTFILE SPECIFIED 
openplot "qlu2.beh" 

LOGIC ANALYZER STYLE OUTPUT FORMAT SELECTION. 
(setq !analyze t) 
(wr-format) 

GLITCH DETECTOR SELECTION. 

NODE TRANSIENTS REPORT DEFINITION. 
( chflag '( output_l output_2 output_3)) 

TRIGGER CONDITION SET-UP 

40 



ADDITIONAL SIMULATION SET-UP COMMAND LINES . 
(printf "The simulation starts now ... \n") 

SPECIFICATION OF A TIME/BASENAME FILE FOR INCLUSION . 
(load "qlu2.time") 

ADDITIONAL WRAP-UP COMMAND LINES. 
(printf "simulation completed ... check file *.rlog for results . \n") 
exit 

GEN-CONTROL COMPLETED. 

2. San1ple RNL Sin1ulation Output 

62 nodes, transistors: enh=157 intrinsic=O p-chan=30 dep=O low-power=O pullup=O resistor=O 

Report format of logic analyzer style output 
time clka clkabar output status 

The simulation starts now ... 
output_! = 1 ~ 0 
output_2 = 1 ~ 0 
output_3 = 1 ~ 0 
1 0 0 111 0000000 
output_! = 0 C 0.5 
2 1 0 011 0000000 
output_3 = 0 ~ 0.2 
output_2 = 0 C 0.2 
output_2 = 1 ~ 0.9 
output_3 = 1 ~ 0.9 
3 0 0 011 0010101 
output_! = 1 ~ 0.2 
4 1 0 111 0010101 
output_3 = 0 ~ 0.4 
output_2 = 0 ~ 0.4 
output_!= 0 ~ 0.7 
5 0 0 000 0001001 
output_3 = 1 ~ 0.8 
output_2 = 1 ~ 0.9 
6 1 0 011 0001001 
output_2 = 0 ~ 0.6 
7 0 0 001 0000100 
8 1 0 001 0000100 
output_3 = 0 ~ 0.3 
output_2 = 1 ~ 0.4 
9 0 0 010 0001000 
output_2 = 0 ~ 0.5 
output_! = 1 ~ 0.9 
10 1 0 100 0001000 
output_2 = 1 ~ 0.8 
11 0 0 110 1000100 

41 



output_ 1 = 0 ~ 0 . 6 
output_2 0 ~ 0 . 6 
output_2 = 1 ~ 0.9 
output_1 = 1 ~ 0.9 
12 1 0 110 1000100 
output_1 = 0 ~ 0.7 
output_2 = 0 ~ 0.9 
13 0 0 000 0000101 
output_3 = 1 ~ 0.9 
output_1 = 1 ~ 0.9 
14 1 0 101 0000101 
15 0 0 101 0101000 
output_1 = 0 ~ 0.5 
16 1 0 001 0101000 
output_3 = 0 ~ 0.3 
output_3 = 1 ~ 0.9 
17 0 0 001 0010000 
18 1 0 001 0010000 
output_1 = 1 ~ 0.9 
19 0 0 101 0011001 
output_2 = 1 ~ 0.2 
20 1 0 111 0011001 
output_3 = 0 ~ 0.4 
output_1 = 0 ~ 0.6 
21 0 0 010 0010100 
output_2 = 0 ~ 0.6 
22 1 0 000 0010100 
output_3 = 1 ~ 0 . 4 
output_2 = 1 ~ 0.4 
23 0 0 011 0000001 
output_2 = 0 ~ 0.5 

output_3 0 ~ 0.6 
output_3 = 1 ~ 0.8 
output_2 1 ~ 0.9 
24 1 0 011 0000001 
output_1 = 1 ~ 0.9 
25 0 0 111 0010001 
26 1 0 111 0010001 
output_3 0 ~ 0.4 
output_2 = 0 ~ 0.4 
output_2 = 1 ~ 0.9 
27 0 0 110 0011000 
28 1 0 110 0011000 
output_1 = 0 ~ 0.3 
output_2 0 ~ 0.3 
output_3 = 1 ~ 0 . 4 
output_1 1 ~ 0 . 4 
29 0 0 101 0100101 
output_1 = 0 ~ 0.6 

output_3 0 ~ 0.6 
output_3 = 1 ~ 0.8 
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output_2 = 1 ~ 0.9 
output_1 = 1 ~ 0.9 
30 1 0 111 0100101 
output_2 = 0 ~ 0.5 
output_1 = 0 ~ 0.7 
31 0 0 001 1001001 
output_2 = 1 ~ 0.9 
output_1 = 1 ~ 0.9 
32 1 0 111 1001001 
output_2 = 0 ~ 0.6 
33 0 0 101 1001001 
simulation completed ... check file • . rlog for results . 
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